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On the subliming surface of a semi-infinite solid
body the temperature Ts = const and the gradient ¢(t)
are given, together with the temperature at infinity
Ty = const and the initial temperature distribution,
These conditions are sufficient for finding the tempera-
ture distribution T(x,t) and the linear rate of sublima-
tion when t > 0, In a system of coordinates related to
the surface, the problem has the form
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The initial condition has not been written in (1) only
because it is not required for the asymptotic solution.

For the case ¢ = const, the Hertz~Michelson solu-
tion is well-known:
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In the case of slowly varying ¢ it is convenient to

introduce the notation
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Then (1) takes the form
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The expression for u/u(p was obtained by integrating
the equation with respect to £ from 0 to .
We shall seek & in the form
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Substituting (3) into (2), and equating coefficients of
like powers of £, we obtain a system of equations for
ckt
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For slow variation of ¢, system (4) is equivalent
to a system with a small parameter in the presence
of derivatives.

As regards the argument t, this role will be played
by the quantity a/ul, which must be small in com-
parison with the characteristic time of variation of ¢
or Ugp:
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We may seek an asymptotic solution when a/u® —

— 0 in the form of a power series in a/ui‘p. In dimen-
sionless variables this will simply be a series in the
derivatives, which we find by successive approxima-
tions. In the second approximation, restricting atten-
tion to quantities of the order «? and a', we have
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Then the last formula of (4) gives
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or in dimensional variables
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To any accuracy of order o, Eq. (5) is well-known
as the Zel'dovich formula,
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